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ABSTRACT

A radar target, acting as a scatterer of an incident

electromagnetic wave, can be considered as a linear time-

invariant system. Previous work has shown that the target's

pole locations are independent of the incident electromagnetic

excitation, including incident wave shape, aspect and

polarization. This thesis develops the Kumaresan-Tufts and

Cadzow-Solomon signal processing algorithms into computer

routines and evaluates their pole extraction performance.

Data used to evaluate the extraction algorithms includes

synthetic and integral equation generated signals with

additive noise, in addition to measurements of scattering by

scale models made in an anechoic chamber.
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I. INTRODUCTION

A radar target, acting as a scatterer of a specified

incident electromagnetic wave, can be considered as a single

input, single output, linear time-invariant (LTI) system for

a fixed field observation point. The target can thus be

considered as a transfer function with poles and zeros. Baum

demonstrated at the Air Force Weapons Laboratory that a

target's induced current response to an incident electro-

magnetic wave has identifiable poles determined by the

composition and structural geometry of the target [1l . In

1974, Moffatt and Mains proposed that the target's scattered

tield pole locations are independent of the incident

electromagnetic excitation, including aspect and polarization

[2]. Morgan has proven theoretically that, for the case of

a conducting target, the scattering response contains complex

natural resonances which are independent of the incident

electromagnetic excitation [3]. By determining the poles of

a target's response, aspect independent target identification

can be accomplished through the use of electromagnetic natural

resonances.

Although the concept of radar target identification

through the use of natural resonances was first proposed in

1974 by Mains and Moffatt [2) , only recently have signal



processing techniques been applied to locate the poles in a

radar target's response in the presence of noise. Kumaresan-

Tufts (4] and Cadzow-Solomon [5] have each developed

algorithms which have proven successful in the presence of

noise. This thesis develops computer routines based upon

these two algorithms and examines their respective performance

and appropriateness using a variety of scatteriiig data.

A. THE PROBLEM

Since the performance of signal processing methods varies

under different conditions, a system employed to identify

targets would possibly reach a decision based on the combined

output of several signal processing methods. For example, the

Kumaresan-Tufts and Cadzow-Solomon methods could be used to

extract poles from the response of scale model targets. The

information so gathered could be used to build a data base for

comparison with data similarly obtained in actual field use.

The results of this system would serve as one input to a

larger system. Other methods would provide input to the

system, such as the K-pulse method of Kennaugh [6] and the

annihilation filter used by Dunavin [7] , Morgan and Dunavin

[8] and Chen [9]. As the name suggests, an annihilation

filter annihilates the target's poles. A system using the

annihilation filter concept would contain many such filters,

each previously designed to cancel the poles of a specific

2



known target. In actual field use, a radar target's response

would be input into each of the filters, and the target

selected would be that matching the filter whose output

exhibits the lowest signal energy.

A system used to identify radar targets would require the

following concept of employment. First, information required

by each of the sub-systems would be obtained for every target

class of concern. In actual field use, this information would

be compared against actual radar target responses. The system

would then determine the identity of the target based on the

input from each of its sub-systems.

B. BACKGROUND

Consider a perfectly conducting target illuminated by an

electromagnetic field. The current induced on the surface of

this target at a given point must satisfy the magnetic field

integral equation (MFIE) , [I0]

(r,t)=2fixHi I(Pt)+ ( ,+,t)J(r,t-- idS p,

where fi is an outwa.1 unit vector normal to the surface of
-f

the object, J is the surface current density, H, is the

incident magnetic field, and R is a Green's function dyadic.

The entire equation is most easily understood as the sum of

driven currents and "feedback" currents corresponding to the

3



cross-product term and surface integral term respectively.

The term driven by the magnetic field,2fixHforms the physical

optics portion of the total current. Physical optics

describes the cross-product term as the induced current

without interaction with the rest of the body. The Green's

function kernel describes the current at a point on the object

due to the feedback of currents from every other point on the

object, as previously illuminated by the incident field. The

current at each point is then summed over the surface of the

object. Note that the surface integral term is of principal-

value type; the integral excludes the point r=ir

Once the incident magnetic field is no longer present,

the solutions of (1) are considered the natural modes of the

object. These natural modes are of the form, .Jnexp(sn) . The

natural resonance frequencies sn are of the form,

Sn,=Gn+jw n  (2)

where on is the damping rate in Nepers/sec and wn is the

frequency in radians/sec. The natural resonances of (2) are

functions of the structural geometry of the object and are

independent of the incident magnetic field. To understand

how these natural resonances are unique to the geometry and

composition of the object, consider a set of points on the

object previously illuminated by the incident field, so that

iH =0. The current at a given point in the set is due to the

4



infinite number of feedback currents from every other point

in the set. Recall that these feedbacks are described by the

Green's function kernel in the integral term of (1). Since

the set of points previously illuminated is physically located

on the same object, the infinite number of paths that connect

a point with all other points in the set is the same for all

points in the set. The infinite number of paths are unique

to the structural geometry of the object and correspond

exactly to the infinite number of paths taken by currents

which feedback to a given point via the Green's function

kernel. Finally, the composition of the target determines the

surface current density on the object. Although an infinite

number of resonances exists in any object, only a limited

number of these will be measurably excited by an incident

field of finite bandwidth. These resonances described in (2)

appear as complex conjugate pairs in the left-half portion of

the s-plane.

In the far-field, the back-scattered response of a target

to an incident plane wave is of the form

H- --t r TF, t-r-r'/c) dS' (3)

where c is the speed of light and is the unit vector whose

direction matches that of the plane wave's propagation.

5



Equation (3) is the result of integrating the current at

each point on the target surface for a fixed point in the far-

field. Recall that the current at each point on the target

is defined by (1). Thus, the back-scattered far-field can

be obtained by substituting (1) into (3):

H (-r ,t)=u(t-r/c) HP(-r,t)+ n H(-rpt)exp(snt) (4)

n 0O

The currents in (1) produce the field in (4). In fact, each

term in (4) corresponds to the term in (1) which produced it.

Specifically, the first term in (4) describes the physical

-I
optics scattered field generated by the 2fixH current which,

of course, is the first term in (1). Similarly, the second

term in (4) is produced by the source-free currents defined

by the second term in (1). Like the current described in (1),

the field in (4) is the sum of two terms, a driven term and

a term containing feedbacks.

The results of (4) can also be seen as two forms of the

Singularity Expansion Method (SEM) developed by Baum [l]. As

shown by Morgan [0], during the early-time portion of the

target's response, the scattered field is composed of the

physical optics scattered field and a "Class 2" form of the

SEM expansion. The class 2 SEM expansion corresponds to the

second term of (4), wherein the coefficients H. are time-

varying as the wave passes over the target, since the currents

6



producing this portion of the field are integrated over a

time-varying surface area. At the instant the wave passes the

last point of the target, the physical optics field vanishes

and the remaining term in (4) is produced by constant

coefficients Hn. The coefficients Hn are constant at this

instant since the surface area in the integral in (3) is now

constant. This instant also marks the transition of (4) from

a "class 2" SEM expansion of time-varying coefficients to a

"class I" SEM expansion of constant coefficients. The

scattered field due to a plane wave is therefore composed of

a physical optics term and a class 2 SEM expansion in the

early-time, and a simple class 1 expansion in the late-time.

Actual measurement of the scattered far-zone field would

be greatly aided by knowledge of the transition time of the

field from early time to late time. From 10], this

transition for a monostatic radar would occur at At=T+2(D+d)/c

seconds after radar turn-on. Here, T is the pulse duration,

D is the target's dimension along the direction of wave

propagation, d is the distance between the target and the

measurement point and c is the speed of light.

The discussion presented in this section was extracted

from work done by Morgan in [10). The reader is referred to

this work for a more detailed treatment of the material in

this section.

7



C. HISTORY

The results of the previous section form the basis for the

hypothesis that the natural resonances found in the scattering

response of a target to an incident electromagnetic wave are

unique to that target. Additionally, only a finite set of

these natural resonances are measurably excited by a wave of

finite bandwidth. In 1974, Moffatt and Mains proposed that

the extraction of resonances from a target's response to

electromagnetic excitation could be used for target

identification. This work related to earlier work in 1965,

when Kennaugh and Moffatt first developed the concept of a

radar target as a linear time invariant system. Poles in the

z-plane are directly related to the natural resonances of a

target

zn=e (5)

where sn is given by (2) and At is the sampling interval in

seconds. Hence, pole extraction involves resonance

identification. The use of pole extraction algorithms is

discussed in the next chapter.
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II. POLE EXTRACTION ALGORITHMS

The use of pole extraction algorithms to identify radar

targets is discussed in this chapter. A brief discussion of

two methods precedes the in-depth evaluation of the Kumaresan-

Tufts and Cadzow-Solomon algorithms. The evaluation of the

latter two algorithms occurs in two stages. First, each

algorithm will be evaluated in its ability to extract poles

from data with known poles. Some of the data processed was

generated at various signal to noise ratios by a computer

program written by Morgan [11]. Additional data was produced

by Morgan's time-domain thin wire integral equation computer

program [12]. In the second stage, a side by side comparison

is made of poles extracted by each method using transient

scattering measurements for a thin wire and for various model

aircraft. Comparisons between the two methods are made as the

aspect of the aircraft is varied.

A. PREVIOUS WORK

1. Direct Minimization

The most direct way to determine the natural

resonances in a target's response is to minimize the mean-

square error between the modeled signal and the received

signal. In [10], Morgan determined that the late-time target

9



response to a radar could be represented as a sum of damped

sinusoids given by

=(t) Aie cos( It+et) (6)

The frequency, wir and damping rate, .o, are the same

parameters found in the natural resonance defined in 12).

Phase, 0 , and amplitude, A,, are the remaining parameters.

The representation in (6) is the sum of an infinite number of

resonances. The sampled response to an incident wave of

finite bandwidth can be modeled as

N a In~t

j(net) = y =JA 1 e cos(wnt+O8) (7)

where At is the sampling interval in seconds. The four

parameters of (7) must be adjusted to minimize the sampled

mean-square error signal

e2=(y -n 2
n- (8)

between the actual discrete sampled received signal y and the

modeled signal Yn" The processing required in this

minimization problem is both inefficient and highly non-

linear. Nevertheless, Chong used this method to process

mathematically-generated data down to 15.0 dB signal-to-noise

(SNR) ratio t13).

10



2. Prony's Method

As in direct minimization, Prony's approach to

resonance classification focuses on the late-time portion of

a radar target's response. However, linear processing and

root solving are used. The late-time response is modeled as

the output of an LTI system of order KD. Each signal received

at some discrete sample, n, is considered to be the weighted

sum of KD previous signals. Thus, the finite term

approximation of the received late-time signal, y is defined

by KD

n I)- b y n  (9)

The z-transform of (9) is

zL -b zK -b 2 K% .-.- bD= (10)

The roots of this polynomial in z are the poles of the system

model. Therefore, the key to extracting the poles in the

system's response lies in solving for the coefficients b, of

(9).

A set of KD+M received signals in M equations (9) can

be arranged in matrix form as

F YO0 -. iF bK [ KD (1)

L L . LYKD+MjYMS " KDM-2Y D -

ii



In Prony's original method, the data matrix D is

exactly determined, and the coefficient vector, b, is solved

using linear computations. In the presence of noise, Prony

overdetermines the data matrix by setting M>KD and solves for

the coefficient vector by obtaining the least-squares solution

to the system of equations.

The Prony method has two major problems. First, the

poles obtained by the least squares solution to the

overdetermined matrix may be strongly perturbed by noise [14]

since noise does not satisfy the causal model of the system.

Second, the order of the system is generally not known a

priori. When the estimated order is greater than the actual

order, poles due to noise are generdted. Prony's method

offers no technique for distinguishing between the signal

poles and the extra poles caused by overestimation of the

system's order. If the estimated system order is less than

the actual order, actual poles are lost and the remaining

poles are perturbed from their true positions.

B. KUMARESAN-TUFTS ALGORITHM

The Kumaresan and Tufts pole extraction algorithm was

developed by adapting Prony's method to reduce the problems

addressed in the preceding section. The Kumaresan-Tufts

algorithm modifies the least-squares Prony method in three

ways:

12



I. Processed signals are arranged in a data matrix
based on a non-casual model of the system.

2. The model of the system is deliberately
overestimated.

3. The system of equations determined by the above
two criteria is solved by using singular value
decomposition (SVD).

Kumaresan demonstrates in [151 that the use of singular

value decomposition tends to force the extra poles of the

excess-order system inside the unit circle, while the non-

causal arrangement of the signals tends to force the signal

poles outside the unit circle. The excess order of the system

model reduces the effects of noise on the actual poles. Since

the noise is stationary and stable, it looks the same in

forward and backward time.

1. Equations

Recall that in (9) , Prony's technique defines the

received late-time signal as the weighted sum of KD previous

signals, where KD is presumed to be the order of the system.

Kumaresan models the same late-time signal as the weighted sum

of KD tuture signals, where K D is greater than the estimated

order of the system. This non-casual model is given by

KD

YM= b y (12)

13



A system of M such prediction equations can be written in

matrix form as

L Y J L (13)

Or, in matrix notation,

D).b=y (14)

As in Prony's meLhod, the coefficients b' are coefficients of

a polynomial in z that models the system's late-time response.

Two simple manipulations of either data matrix leads to the

relationship between the coefficients of the Prony model and

the prediction coefficients of the Kumaresan-Tufts model.

With b =-I , a prediction coefficient is related to an

autoregressive coefficient by

b', - b (15)

From the above relationship, it can be shown that the complex

pole pairs of the causal model are merely conjugate

reflections across the unit circle of the pole pairs in the

non-causal model.

2. Singular Value Decomposition

The non-causal arrangement of late-time signals in a

set of system equations, and subsequent processing through

singular value decomposition, combine to separate the signal

14



and noise into orthogonal spaces. As discussed in the

preceding paragraph, poles of the non-causal model are

reflected outside the unit circle. Kumaresan demonstrates in

[15] that the extra poles of the excess-order system can be

forced inside the unit circle through the use of SVD.

Singular value decomposition factors the MXK," data

matrix D. into the product of the matrices:

The columns of U (MXM) are eigenvectors of DY D and the

columns of V (K XKD) are eigenvectors of D Dy If r is the

rank of the data matrix, Dy, the diagonal matrix y (MXKl:)

contains r singular values which are the square roots of the

nonzero eigenvalues of both DTD and D . By rearranging

the three matrices in the product, the pseudoinverse of Dy. can

be obtained as

D*=VYUT
y (17)

where 7* is a (KDXM) matrix whose singular values on the

diagonal are the reciprocals of those in the X matrix.

Finally, the coefficient vector b*, of minimum Euclidian norm,

is given by

b" .= (18)

15



The coefficient vector b so obtained is the minimum length

least-squares solution to (14). In other words, b+ is the

best possible solution to (14). In the case of noiseless

data, the extraneous poles generated by the excess-order model

will always be inside the unit circle when b+ is used. This

result is generally true for noisy data.

3. Bias Compensation

Kumaresan and Tufts [4) observed that the addition of

noise perturbed the singular values of the I matrix of (16).

If the perturbation of these singular values is not

compensated, both the signal poles and extraneous poles are

biased towards the unit circle. Kumaresan and Tufts used a

compensation method which reduced the bias in their work, but

did not derive an analytical justification. In [16), Norton

derived a more valid bias compensation method based on the

eiqenvalue shifting theorem.

4. Kumaresan and Tufts Compensation

If the actual order of the system is Kn , then the

first K' singular values of the Z matrix in (16) are non-

zero. The remaining KD-K' singular values are considered

noise singular values and are zero in the case of noiseless

data. The addition of noise perturbs the first K. signal

singular values and increases the noise to some non-zero

value. Kumaresan and Tufts compensated for this increase in

the singular values due to the noise by subtracting the

16



average of the noise singular values from the signal singular

values. The noise singular values were then set to zero.

5. Compensation Based on Eigenvalue Shifting Theorem

As described in the previous section, the singular

values of the matrix D are the square roots of the

eigenvalues of D DT_ and DDT D Assume the noisy data matrix
y y y y "

can be represented by DY=S+N, where N is composed of the wide-

sense stationary white noise process v,, given by

QM"""MKD

T

The expected value of D D can be obtained by

DyDT=E[ (S+N) (S+N) T]=ECSS'I+ECSNT]+E[NST +E[NN ] (20)

Since S is deterministic, E[SST]=SST. Assuming the noise is

zero mean, the two cross products are zero. Because we assume

the noise is wide-sense stationary and white, E[NNT ]=,2,

VVwhere o02 is the noise variance and I is the identity matrix.

The expected value of' D DT thus becomesyy-

(21)
E[ DyDT ] =SST+o0I

17



Similarly, the expected value of DTDy, the other source of

singular 
values, is

E[DT]=S S+o2I (22)

The assumption in the results of (21) and (22) is that the

diagonals of E[NTNI=E[NNT equals the noise variance y2 .2

Equations (21) and (22) show that in the mean, the squares of

the singular values of D are increased by the noise variance.y

The results lead to the method of eigenvalue

compensation recommended by Norton in [16) . Recall from (16)

that the eigenvalues of D are on the diagonal of the I

matrix returned by the singular value decomposition of Dy •

If KD is the actual order of the system, and KD is the

estimated order of the system then the remaining KD-KD'

singular values of the I matrix can be squared and averaged

2to obtain an estimate of the noise variance, Ov These noise

singular values can then be set to zero. The first KD

singular values of the I matrix are then squared and reduced

by subtracting the estimate of the noise variance. The square

root of the difference becomes the new first KD singular

values of the compensated I matrix. Calculations according

to (17) and (18) can then be carried out in a normal manner

to obtain poles in the presence of the noise. Eigenvalue

compensation requires an estimate of the actual order of the

system. Methods to obtain this estimate are discussed in

Chapter III.
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6. Performance

The Kumaresan-Tufts algorithm was programmed in

Fortran and tested on various types of data. The program

appears in Appendix A.

a. Synthetically Generated Data

The starting point for evaluating the performance

of the Kumaresan-Tufts algorithm was with synthetically

generated data of the form given by (8) and shown here again

for convenience

N 01 n6 t
y= A ie cos(Win~t+81 ) (8)

Again, At, ac,8 1 , are the amplitude, damping rate, frequency

and phase of a set of N damped sinusoids. Noisy data was

created by adding stationary white noise.

1. Noise Performance

The algorithm was evaluated at various SNR's,

ranging from 90.0 dB to 7.0 dB. These SNR's are ratios of

signal energy to noise energy rather than the ratio of signal-

to-noise power. Synthetic data so generated more closely

resembles the exponential decay of signal power typical in

actual radar measurements.
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Figure 1 shows the signal produced by two s-

plane poles at 90.0 dB. Figures 2 through 6 depict the poles

extracted from this signal at SNR's ranging from 90.0 dB to

7.0 dB. Obtained poles are shown at their positions within

the upper right hand quadrant of the unit circle in the z-

plane. Not shown are conjugates of each pole which are

located below the real axis outside the figure boundaries.

Figures 2 through 6 demonstrate outstanding

performance on noisy data, even at SNR's of 7.0 dB. The

scaling needed to show a discernible difference between

results obtained at 30.0 dB and 7.0 dB would necessarily

exclude one of the poles from the enlarged figure. The

average distance of the trial poles obtained in the 7.0 dB

SNR signal from the true poles is on the order of 10 -3 . This

magnitude corresponds to that of the average estimate of the

noise variance obtained in successive trials with this signal.

The correlation between the distance of trial poles from true

poles and the noise variance estimate was consistently

observed with each of the different signal-to-noise ratios

used. Figure 7 depicts the signal of Figure 1 severely

corrupted by noise having 7.0 dB SNR.

As discussed previously, the signal-to-noise

ratio used in the synthetically generated data is the ratio

of energy. Figure 8 depicts the results of pole extraction

from the signal shown in Figure 7, but with a late-time
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beginning ten nanoseconds later. Since the SNR is calculated

over twenty nanoseconds for both signals, the signal power at

some later time will clearly be less than the power ten

nanoseconds earlier. The results in Figure 8 show complete

breakdown of the algorithm's ability to extract poles. The

trial poles shown are the poles closest to the true poles, and

yet they are located at positions whose reflections are inside

the unit circle where noise poles are typically located.

The preceding results show outstanding

accuracy for full-length noisy data but a complete breakdown

of the algorithm for the same signal with a later transition

to late-time. These initial observations are supported by

similar findings presented in this thesis.

b. Thin Wire Integral Equation Generated Data

For simple objects such as a thin wire, the radar

response of that object can be computed by establishing

boundary conditions on the object and numerically solving the

integral equations that describe the surface current. Recall

the magnetic field integral equation given by (1).

Simulations produced by Morgan's time-domain thin wire

integral equation computer program [12) were used to evaluate

the pole extraction algorithm. The excitation waveform used

is the double Gaussian pulse depicted in Figure 9. This pulse

is a wide Gaussian pulse with a ten percent width of 0.3

nanoseconds subtracted from a narrow Gaussian pulse with a ten

29



Double Gaussian Curve

i-

0.6-

0.4 -

0
0 2 -.

0 0. 1 2 2.5 3 3.5 4. 5

Time (nanoseconds)

Figure 9. Double Gaussian Pulse

30



nanoseconds subtracted from a narrow Gaussian pulse with a ten

percent width of 0.15 nanoseconds.

Figures 10 through 13 depict back scattering

response of a 0.1 meter length thin-wire, having a radius of

0.00118 meter, computed at various incident aspects, ranging

from thirty degrees to ninety degrees. The laboratory

arrangement for actual measurements simulated by Morgan's

program is described in (17] . Ninety degrees represents a

broadside aspect, while thirty degrees represents the incident

plane wave having nearly grazing incidence on the wire. The

poles extracted at each of the four aspect angles are plotted

in Figure 14. In this figure, and those that follow which

depict extracted poles, the signal poles lie in or on the unit

circle, and the noise poles lie outside.

The results obtained with this rigorous numerical

computation demonstrate the aspect independence of the

extracted poles using the Kumaresan-Tufts method. Note that

only half of the poles were obtained for broadside

illumination; two even-numbered poles can easily be seen

outside the unit circle. This results because of the physical

symmetry of both the wire and the incident field, thus

precluding excitation of odd-symmetric modal currents and

their associated natural resonances.

Figure 15 exemplifies the computed back-scattering

response of the 0.1 meter thin wire corrupted artificially
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with noise at a 20.0 dB SNR. Figure 16 shows the poles

extracted at each of the four angles of incidence used

pieviously in Figure 14. Poles of Figure 14 at 900 are now

missing in Figure 16, and only the first three low frequency

poles are tightly grouped. The loss of high frequency poles

is expected because these have the highest damping and thus

lose their energy at the fastest rate. Further comparison

between results computed at 20.0 dB SNR and infinite SNR are

offered, angle by angle, in Figures 17 through 20.

One additional test of the computed thin wire

scattering was conducted at a 7.0 dB SNR. The corrupted

waveforms are exemplified by Figure 21; the extracted poles

are shown in Figure 22. The number of poles obtained has

decreased with respect to the number obtained at 20.0 dB SNR.

The grouping of the clusters has also expanded. Angle by

angle comparisons are again offered in Figures 23 through 26.

c. Scale Model Measurements

The transient scattering measurements of scale

models used for evaluation in this section were made by Walsh

using the anechoic chamber of the Transient Electromagnetic

Scattering Laboratory at the Naval Postgraduate School. The

entire measurement process and laboratory setup are described

in detail in [17].
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1. Wire Targets

The thin wire measurements were obtained from

the scattering response of a 0.1 meter length thin wire having

radius 0.00118 meter. Recall that these are the same

dimensions as the wire whose computed response was processed

in the previous section. The measurements at each of four

incident aspects are shown in Figures 27 through 30.

The poles extracted from the four measurements

are depicted in Figure 31. As before in the computed noisy

data, tight clusters occur only at the lowest frequencies.

The poles in these tight clusters are those which are

measurably present at various aspects. The poles extracted

at higher frequencies are those which possessed sufficient

measurable energy at the given aspect. Figure 32 depicts the

comparison between poles extracted from the measured and

computed signals. Again, the closest agreement between the

two sets of poles occurs at the lowest frequences.

2. Aircraft Models

Plastic 1/72 scale aircraft models, coated with

silver, were used for transient scattering measurements.

Representative scattering signatures of two aircraft targets,

measured at six different aspects, are shown in Figures 33

through 36.

The results of pole extraction in target 1 are

shown for a total of six different aspects in Figures 37 and
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38. The poles extracted at all six aspects are shown in

Figure 39. Only one clearly discernible cluster is present

in each of the three figures. At higher frequencies, no

useful information is imparted by the data. Results of

similar, though slightly improved quality, were obtained from

target 2. These results are presented in Figures 40 through

42 in the format of Figures 37 through 39 respectively.

Although the Kumaresan-Tufts algorithm is

capable of extracting low frequency poles acceptably, the

inconsistent results at higher frequences reveals the inherent

weakness in an algorithm capable of processing only the late-

time portion of a target's radar response.

A side-by-side comparison of poles obtained from

both aircraft by both the Kumaresan-Tufts method and the

Cadzow-Solomon method is presented at the end of the chapter

to illustrate the gains afforded by processing the early-time.

C. CADZOW-SOLOMON ALGORITHM

Recall from the results depicted in Figure 8 that a late

transition to late-time, and the consequent reduction of

signal power, caused complete breakdown of the Kumerasan-Tufts

algorithm. The Cadzow-Solomon algorithm addresses this

shortcoming by processing the signal at the instantaneous

onset of early-time. Thus, the Cadzow-Solomon algorithm is

capable of processing the earliest response of a target to
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electromagnetic excitation where the response has the greatest

magnitude.

1. Applicability

The early-time portion of a target's scattered field

occurs as long as there is a driven portion of the total

field. Once the field no longer contains a scattered response

due, in part, to the incident excitation at points on the

object, early-time ceases and late-time begins. Hence, the

Cadzow-Solomon models both the system's input and output, and

equivalently, the poles and zeros of the system transfer

function.

2. Equations

The Cadzow-Solomon algorithm extends the auto-

regressive equation (9), used in Prony's method, to the more

general autoregressive moving average (ARMA) equation

KD  KN

yn= bly -t+ E alxn s  (23)

where the second summation term models the excitation to the

system.

A set of M such equations in matrix form is given by

.. 0- b':KD - r
x .y .. XL v : (24)

Y*_ .."YK M- """ N - a N  YK MM D' - I
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As in the Kumaresan-Tufts method, M is selected to be greater

than the column dimension of the data matrix which is

KD+KN+l.

3. Excess Poles and Noise Removal

The Cadzow-Solomon method used in this thesis is a

modification which incorporates the non-causal arrangement of

the system equations used by Kumaresan-Tufts. This

modification was first discussed by Norton in [16]. The

Kumaresan approach of overestimating the system order can be

used as before in a non-causal model to constrain the noise

poles inside the unit circle, while SVD forces the signal

poles outside the unit circle.

Since the input waveform is known, its order can be

almost exactly determined. In all the work of this thesis,

the input waveform used is the double Gaussian depicted in

Figure 14. Approximately 25 samples defining this pulse of

0.5 nanoseconds duration makes KN equal 25 in equation (23).

Since the input is causal, the signal zeros fall inside the

unit circle where they cannot be easily segregated from

similarly located noise poles. However, the signal zeros

impart no information about the target and need not be

extracted. The inclusion of the input in the data matrix is

nevertheless vital to the model of the system and the accurate

determination of the signal poles.
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The ARMA equation of (23) can be modified to obtain

KD KN

Yn- b' y D n_1 + E a lXn-I (25)

The recursive portion of (25) is now in a non-causal form

similar to expression (12) A set of M such equations in

matrix form is given by

F KN i... KN+KD X0 . . . 1 N K

I: b =Kl (26)L I .' X j_ K L Y K M I J

La,
Or, in matrix notation

hee [L (27)

4. Singular Value Decomposition

Like the system equations of the Kumaresan-Tufts

model, the system equations in (26) are processed using

singular value decomposition. The coefficient vector is again

the minimum-norm solution, which constrains the extraneous

poles and extraneous zeros to be inside the unit circle.

S. Bias Compensation in the Cadzow-Solomon Formulation

By compensating the eigenvalues of the I matrix in

(16), the performance of the Kumaresan-Tufts algorithm is

significantly improved in the presence of noise. Cadzow-

Solomon have shown [5] that if the actual orders KD and KN
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are overestimated to be KD and , mm (KD-KD,KN-KN) singular

values are zero in noiseless data. Since the input data is

known, the eigenvalues of the data matrix may be compensated

in the same manner as in the Kumaresan-Tufts algorithm for

noiseless data.

To understand the compensation required in noisy data,

an analysis of additive noise is required. As given by Norton

[16] , if the input data noise is w, and the output data noise

is vr, the data matrix may be modeled as

(28)

where

[N1 ] [N,:Nx] (29)

and
vi . . VKD

Nx= NY= (30)

WMN • .WMK VM V KD

The expected value of D DT is theny y

E[D x Dx]=SySyx +E[NYX] (31)

If the input and output noise variances are not equal, the

eigenvalue shifting theorem used in Kumaresan-Tufts cannot be

used to analytically predict the requisite eigenvalue

compensation of DYDT X. Nevertheless, when the input and

output variances were assumed equal, and eigenvalue

compensation similar to that used in Kumaresan-Tufts was
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performed, the results were consistently superior to those

obtained without compensation. Therefore, the results of

Cadzow-Solomon signal processing presented in this thesis were

obtained using eigenvalue compensation and the assumption of

equal noise variance.

6. Performance

The Cadzow-Solomon algorithm was programmed in Fortran

and tested on the same data used for evaluating the Kumaresan-

Tufts algcrithm. Note that the Cadzow-Solomon algorithm

can use thE early-time portion of the data that the Kumaresan-

Tufts algorithm can not use. The program appears in

Appendix B.

a. Synthetically Generated Data

The starting point for evaluating the performance

of the Cadzow-Solomon algorithm was with synthetically

generated data of the form given by (8) plus the addition of

input data required to model early time data.

1. Noise Performance

The algorithm was evaluated at various signal-

to-noise ratios, ranging from 90.0 dB to 7.0 dB. Figure 43

shows the signal produced by two s-plane poles at 90.0 dB,

with a late-time beginning at 10.0 nanoseconds. Figures 44

through 48 depict the poles extracted from this signal at the

different signal-tc-noise ratios.



CC

II COA

Fiue4. SgazotiigToSPaePls
900dBS4

- 3



/

= 
/

£ 

N

00

Cz

-

+

6Z , 
-

- I03

Figure 44. Cadzow-Solomon Poles, Synthetic Data, 90.0 dB SNR

74



I I-

/

C
o /

U) /N

0 (U
0 /

~/ U) /

- © )'

SI I I 1_

Figure 45. Cadzow-Solomon Poles, Synthetic Data, 30.0 dB SNR

75



0 +

67



00

EC

C:

z 4/ulI~

Fi u e 7 C d o w S l o o P l s , S nt e i c D t a 0 ./ N

/7



z ki n I I

Fig re 8. ~ d ow- olo on Pol s, yn het c D ta 7. dBS6

&7



The figures chart the steady degradation of

the algorithm's performance with the increase of noise. At

30.0 dB, the location of the low frequency pole is already

slightly displaced. More significant is the location of one

of the extracted poles in the noise signal space. At 20.0 dB,

the low frequency pole is located in some trials on the real

axis. At 10.0 dB, all the extractions are located on the real

axis and at 7.0 dB their locations there are dispersed. The

extraction of the higher frequency pole is

uncharacteristically more accurate than that of the low

frequency pole. Even at 7.0 dB, the high frequency pole is

located with excellent accuracy. The location of the low

frequency ?ole near the real axis was chosen deliberately to

illustrate the difficulty in resolving the slight frequency

difference between the true pole and a noise pole located on

the real axis. Also, fewer points were processed using the

Cadzow-Solomon method than were processed using the Kumaresan-

Tufts method, since the largest data matrix allowed by the

programs in Appendices A and B contain fewer data points in

the Cadzow-Solomon data matrix than in the Kumaresan-Tufts

data matrix. The results demonstrate the need to process a

substential number of points in order to accurately extract

low frequency poles.
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b. Thin Wire Integral Equation Generated Data

The performance of the Cadzow-Solomon algorithm

was evaluated using the same set of data tested by the

Kumaresan-Tufts algorithm. The results are presented in

Figure 49. Tight clusters appear at frequencies higher than

those obtained with the Kumaresan-Tufts algorithm. Figure 50

depicts the poles extracted from the same signal at a 20.0 dB

SNR. The clustering at this SNR is comparable to the results

obtained by the Kumaresan-Tufts method with the noiseless

data. Further angle-by-angle comparisons of the poles

extracted from the noiseless data and the 20.0 dB data are

depicted in Figures 51 through 54. Note the small number of

poles in Figure 54 due to the unexcited odd-symmetric poles

at 900 aspect.

One further test was conducted on computed data

at a 7.0 dB SNR. The results are depicted in Figure 55. Even

at 7.0 dB, discernible clusters are present. Angle-by-angle

comparisons of the poles obtained in 7.0 dB data and those

obtained in noiseless data are presented in Figures 56 through

59.

c. Scale Models

The same scale models used to evaluate the

Kumaresan-Tufts algorithm were used to evaluate the Cadzow-

Solomon algorithm.
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1. Wire Targets

Figure 60 depicts the poles extracted from

measurements of a 0.1 meter wire. Three tight clusters appear

at the lowest frequencies and at the highest frequencies. The

nol-s in between can not be easily discriminated. The

dispersion of these poles is appatcntly due to the aspect

dependence of their measurable power. In other words, these

poles are excited more at some aspects then at others.

Figure 61 depicts the comparison between poles

extracted from computed data and measured data. As in Figure

60, close agreement exists at the highest and lowest

frequencies. The results are much more favorable than those

similarly obtained by the Kumaresan-Tufts algorithm.

2. Model Aircraft

Figures 62 through 64 depict poles extracted

from aircraft target 1. As in the Kumaresan-Tufts testing,

the Cadzow-Solomon testing was conducted at six different

aspects. Results for target 2 ara depicted in Figures 65

through 67. The results of both targets show clearly defined

clusters. The first two clusters of target 2 are

exceptionally tight. However, the mid-frequency clusters of

target 2 are not as clearly formed as those of target 1.

Comparisons of poles obtained with each method

for target 1 and 2 are depicted in Figure 68 and 69

respectively. These two figures graphically depict the clear
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superiority of the Cadzow-Solomon algorithm over the

Kumaresan-Tufts algorithm.

In order to obtain an initial indication of

the possibility for target classification through pole

extraction, nose-on measurements of two additional aircraft

models were made, processed and compared with the results of

targets 1 and 2. The nose-on measurements of targets 3 and

4 appear in Figures 70 and 71 respectively. A comparison plot

of poles extracted from each of the four targets is depicted

in Figure 72. Each of the four aircraft measured are fighters

of similar size and shape (see Table 1). The poles for each

target are sufficiently different in this single measurement

to identify each aircraft individually. However, some of the

poles are arranged in clusters which appear with a harmonic

pattern similar to that obtained for either of the first two

aircraft at various aspects. In order to more fully assess

the target classification capability of pole extraction,

several measurements should be made of a given aircraft model.

A plot of the poles extracted from each of these measurements

would form clusters at the locations of the true poles. The

centroid of each of these clusters would then be compared

against the centroid poles similarly obtained from other

aircraft. Although several poles of different aircraft might

be similar, the set of poles belonging to an aircraft could

form the basis for classification if that set was unique among
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the sets belonging to all other measured aircraft. The results

in Figure 72 demonstrate the possibility of using the Cadzow-

Solomon pole extraction algorithm to aid in the classification

of aircraft, perhaps by use of the extracted poles in

constructing annihilation filters.

TABLE 1. FULL SIZE DIMENSIONS OF TARGETS RECORDED

Target number 1 2 3 4

Overall length 12.20 15.03 16.94 16.00
(meters)

Overall height 3.35 5.09 4.51 4.80
(meters)

Wingspan 10.96 i0.00 11.43 13.95
(meters)

Tailplane span Unknown 5.58 6.92 5.75
(meters)
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III. SUMMARIES AND CONCLUSIONS

In this chapter, a step-by-step guide through each

algorithm is presented. At each step, techniques and lessons

learned are discussed together with general observations.

Conclusions are presented at the end of the chapter.

A. KUMARESAN-TUFTS

The first step in processing a signal with the Kumaresan-

Tufts algorithm is to determine the beginning of early-time.

The objective is to pick the earliest possible starting point

without entering into the latter part of early-time. If the

starting point for processing is improperly chosen to include

the early-time, the results will be completely unreliable

since the signal no longer satisfies the late time model. If

the starting point is chosen too late, the signal may not be

sufficiently strong in the presence of measurement noise.

Since the signal is the sum of exponentially damped sinusoids,

the optimum starting point is at the precise instant of

transaction into late-time. The key to determining the

beginning of late-time is in determining the beginning of

early time. Determining the first response of the target to

excitation cannot usually be done by a simple visual

inspection of measurement data. Unless the exact distance to
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the target is known, the most accurate method attempted by the

author for determining the beginning of early-time is to

process the signal using the Cadzow-Solomon algorithm. This

is discussed in the next section. However, the reliance of

the Kumaresan-Tufts algorithm on information provided by the

Cadzow-Solomon algorithm is an obvious disadvantage of the

former method.

Once the starting point for processing has been selected,

the next step is to determine the dimensions of the data

matrix and, consequently, the number of points in the signal

to be processed. In trials conducted on noiseless synthetic

data, the accuracy of pole extraction increased steadily with

the increase in the data matrix dimensions. These trials were

conducted up to the limit of the array dimensions defined in

the computer program of Appendix A. The number of points

processed in measurement data should be as large as possible,

while still meeting the following two constraints. First,

incorporate as many cycles of the data as possible. Usually,

visual inspection of the data reveals a repeating pattern

which should be entirely incorporated into the window of

points to be processed. When only portions of these patterns

are selected, a disproportionate weighting tends to be placed

on certain poles. Second, signal portions late in the

response which are no longer distinguishable in the presence

of measurement noise should not be selected.
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The final step involves determining the number of true

poles in the system. The following approach has proven to be

the most successful. First, process the signal without any

eigenvalue compensation to establish an upper bound on the

order of the system. In most cases, the number of poles

outside the unit circle will be less than the overestimated

order of the system. If n<t, increase the row dimension of

the data matrix in order to increase the estimated order of

the system, and repeat. When the ,umber of poles is less than

the estimated order of the system, then one should Zradually

increase the number of eigenvalues compensated in successive

trials, while closely observing the effects induced on the

poles outside the unit circle. As the number of eigenvalues

compensated is steadily increased, noise poles and weak signal

poles will move inside the unit circle. The programs in

Appendix A and B allow the user to compare the results of

successive trials, by generating overlays for each plot. If

N poles are in the signal space, at least the first N

eigenvalues must not be compensated, or true poles may be

lost. As the actual order of the system is approached by

compensation, the user will notice an ocderly, even

arrangement assumed by the noise poles. If certain poles

still remairn suspect after compensation, vary slightly the

other parameters, such as the starting point and the
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dimensions of the data matrix. Generally, only true signal

poles will repeatedly assert themselves under varying

parameters.

B. CADZOW-SOLOMCN

The techniques and general observations offered in the

preceding section apply equally to the Cadzow-Solomon

algorithm. An important consideration in this method, not

discussed above, is the selection of the beginning of early-

time. Candidates for a starting point are usually at or near

zero crossings within approximately thirty points of the

object's first definite response to electromagnetic

excitation. Begin processing at the chosen point while

varying parameters in successive trials. Select the point

whose successive results are the most consistent under varying

parameters.

The selection of the starting point for beginning of

early-time can be very critical. For example, not a single

pole could be extracted in one trial wherein the starting

point occurred only ten points after the actual starting

point. Additionally, in most cases observed, the late-time

start given by the selected early-time occurred within less

than two points from a zero crossing. If this observation

proves to be generally true in later research, it may serve

Ii
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as a way to check the starting point selected for one

algorithm in terms of the other.

C. CONCLUSIONS

Both the Kumaresan-Tufts and the Cadzow-Solomon algorithms

can effectively extract poles from the scattering response of

a radar target. Because both algorithms obtain a least-

squares solution to the system model, both perform acceptably

in the presence of noise. Although eigenvalue compensation

is not analytically justified in the Cadzow-Solomon algorithm,

the results obtained through eigenvalue compensation in this

method were generally superior to those similarly obtained in

the Kumaresan-Tufts method. The results demonstrated the

inherent advantages of an algorithm capable of processing a

target's strongest response in the early time. The Kumaresan-

Tufts method compared favorably with the Cadzow-Solomon only

in responses with a long late-time.
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APPENDIX A. THE KUMARESAN-TUFTS POLE EXTRACTION ALGORTITHM

The following program implements the Kumaresan-Tufts

algorithm as described in Chapter 2 of this thesis. The

program is written in Fortran 77. The SVD and root-finding

subroutines called by this program are found in the EISPACK

library [18]. The SVD subroutine is a translation from ALGOL

as given in [19] . The matrix multiplication and graphics

subroutines, also called by this program, are found in

Appendix C and D respectively.

MGM I1M,Kd,M,MN,MA7 ,NST1?, t L7Y
11TMIE,WAUS,NMM',L/1/
IWTM*2 KdPLT
REAL*8 A(70,70),W(70),U(70,70),V(70,70) ,RV1 (70)
REAL*8 VS(70,70) ,UT(70,70) ,AfNV(70,70) ,X(70)
REAL*8 XP(70),B(70),SIGMA(70,70),SIG(70,70)
REAL*8 COF(70),ROOTR(70),ROrI (70)
REAL*8 D(I024),AVG,MACQ/1.0E-16/,Dy(140)
OCCPLW*I6 S (70)
JDGICAL MATU/. TRUE./, TV/.TRUE. /,CAUSAL/. TRUE./,LC/. TRUE./
LGICAL DSEM.FALSE./, UMlI.TRUE./
CHARACTER TI'LE*16, HEAE*64, YN*1, DC*I,T *16, TIrff*16
CHARACTE TrL*16

C Enter parameters for processing

11 IF (DSET) CLOSE(10)
NOVERIAY=0
OPEN(10, FILB-='PLr' )

IF (DSET) GO MO 85
WRITE (**) 'Welcome to signal processing using the'
WRITE (*,*) 'Kumaresan-Tufts method'
WRITE , ,
WRITE 'Do you want
WRITE ( I,*) '

WRITE (*,*) '1. The long version for beginners'
WRITE (*,*) '2. The short version for pros'
WRITE (*,*) '
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15 WRITE (*,*) 'Please enter 1 or 2
RED (*,*) N
IF (N .. 1) T
laNG=.TRUE.

L~fFALSE.

OD TO 15

ENDIF

WRITE (*,*) 'Session will begin with entry of parameters needed fo+r processing'
WRITE(*)
WTE(*,*) 'Do you want to enter parameters from'

WTE(*,*)
WRITE (**) '1. The keyboard'
WRITE (*,*) '2. A previously created file of parameters'
WRITE (*,*)

16 WRITE (**) 'Please enter 1 or 2
1 i (*,*) N

IF (N .E. 1) THE
GO TO I

E= (N .E. 2) TM
10 WP!E (*,*) '&nter title of file ccntaining parameters'

READ (*,105) TITL
OPEN(1,ILZII=)
REA(I 105) TITLE

READ(1, 110) NPTS
RD (1, 110) NRT
READ(1, 110) Id
READ (1, 110) M
READ(1,110) I)ELTAY

READ(1,110) NSTRTPT
READ(I,110) NCAUS

=I.(1)
GO TO 85
ELSE
0' 0 16
uNIF
WRITE (*,*)

NFII=.TRUE.
IF (.NOT. DSET) NSTRTPT--1
WRITE (*,*) '&nter title of data file to be read'
READ (*,105) TITLE
OPIN(I,Fn&=Tr)
REA.D(1,105) HAE
READ(l, 110) NPTS
IF (IM .G'T. 1024) TlE

WRITE (*,*) 'WNber of points in data file exceeds the dimension'
WRITE ('*) 'of the array used in the program to store the file'
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STOP
EDIF
CbGE(1)

IF (sr) T
IF O 'Tr+(Kd+M-1)*1* TAY .T. TS) 00 TO 85
DIDIF

3 IF (NlUTZ) '1
WRITE (*,*) 'Rater Kd, )= the estimated order of the system
REP (*) Kd
IF (Kd .GT. 69) THEN
WRITE (*,*) 'Kd must be less than 70, or dimension statements'
WRITE (*,*) 'in this program must changed by the user'
OD TO 3
MJEF (Kd .LT. 2) THE
WRITE (*,*) 'Kd must be at least 2'
Go TO 3
ENDIF

IF (2*Kd .(GT. NMTS) T7"
WRITE (*,*) 'Md must be less than or equal to ',NIFS/2

GO TO 3
ELSrL (2*Kd .E. NPTS) 'An
WRITE (*,*) 'Kd equals' ,Kd
WRITE (*,*) 'M must be',Kd
M=Kd
WRITE (*,*) 'since there are a total of',NPIS
WRITE (*,*) 'points in ',TI'lE
GO '0 45
ENDIF
GO 70 4
ZSEF (DSET) TM
N=M

20 IF (NMRTpT+(N+M-l)*raTAY AE. pT) THEN
WRITE (*,*) 'Given the other parameters chosen thus far,'

25 WRITE (*,*) 'Kd may range from 0,1w
WRITE (*,*) ' to',N
WRITE (*,*) 'Eter Kd'
READ (**) Kd
IF (Kd .GE. NT .AND. Kd .E. N) GO 70 85
GO TO 25
ELSE
N=N-1

GO TO 20
DiDF
DIF

4 IF (NMh) TEN
WRITE (*,*) 'Enter M, the row dimension of the data matrix'
F (.NOT. DSET .AND. LOC) IM

115



WIE(*,*) ,

WR (*) 'Note: Kd4* points in ',title
WRITE (*,*) ' will be processed
'JtI'E (*,*) F

NDIF
30 WRITE (*M*) FMmay range from',Kd

IF (NW S-Kd .GT. 69) TM
WRITE (**) ' to 69,
ELSE
.TIT (,) to' ,NF-YA

ENDIF
RD(*,*) M
IF (M .COT. 69) THE
WRITE (*,*) 'M must also be less than 70'
O 70 30
!2SIF (M .LT. Kd) TH
WRITE (*,*) 'M must be greater than or equal to Kd, Kd= ',Kd
GO '0 30mEI= (Kd+M .GT. WPS) THEN
WRITE (*,*) 'Kd+M must be less than or equal to',NPTS,','
WRITE (**) 'the ntmiber of data points in',TME
WRITE (*,*)
OO 30
ENDIF
ELSE
N=Kd

35 IF (NST>T+(Kd+N-I)*DELThY .LE. NPTS) THE
N=N+l
0O TO 35
ELSE

ENDIF
IF (N .E. Kd) TIEN
WRITE (*,*) 'M must equal' ,Kd

O TO 85
DNDIF
IF (N .GT. 69) N=69

40 WRITE (*,*) 'M may range fram',Kd
WRITE (*,*) F to',N
WRITE (**) 'Enter M'
R (*,*) N

IF (M .GE. Kd .AND. M .LE. N) GO TO 85
GO7040
JEIF

45 IF (.NOT. NUFIL) 0 '70 85

5 N=l
50 IF (NTM+N*(d+M-1) .E. *IS) 7W
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N=K+l

GO TO 50
flbSE

EDIF
IF (N M2~. 1) T'HEN

TE(*,*) 'Given the other parameters hoen thus far,'
WRE(*,*) 'Spacing can cnly be 1'
3!TAY=I

IF ORNIIL) IH
x TO 5C

O TO 85
EDIFDDIF
EDIF
IF (.NDT. DSEr .AND. 1G) TEN
WRITE (*,*) 'Enter spacing between the ',Kd4M
WRITE (*,*) 'data points of ',TITIAE
WRITE (*,*) 'to be processed
WRITE (*,*)' '
WRITE (*,*) 'If, for exmple, one is dsen, then ',Kd+M
WRITE (*,*) 'consecutive points in ',TIL
WRITE (*,*) 'will be processed
WRITE (*,*)
ENDIF

55 WRITE (*,*) 'Spacing may range from 1
WRITE (**) ' to',N
READ (**) TAY
IF (DELTAY .GE. 1 .AND. MITAY .LE. N) THEN
IF (NFflZ) T
GO TO 60
ELME
O 7O 85
ENDIF

ESE
0 TO 55

D DIF

60 WRITE (*,*) 'Do yo wish to adjust eigenvalues? (y/n)
RAD (*120) YN
IF (YN .A. 'N' .OR. YN .. 'in') THEN
IF CFf Z) G0O 6
GO 'M 85
EDIW
IF (YN .ME. 'Y' .AD. YN NE. 'y') G0 T0 60

2 WRITE (*,*) 'Discard or copensate eigenvalues? (d/c)'
REAID (*,120) DC
IF (DC .EQ. 'D' .C1l. DC .A. 'd') M3 T0 65
IF (DC .E. 'C' .AD. DC .NE. 'c') 0O TO 2
WRITE (*,*) 'Enter estimate of the actual order of the system'
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WRITE(*,*)
IF (U G) TMN
WRITE (*,*) 'This estimate will be used to determine the
WRITE (*,*) 'nunber of eigenvalues campensated or discarded
ENDIF

65 WRITE (*,*) 'the estimate may range from 2'
WRITE (*,*) ' to',Kd-1
pIf (*,*) tET

IF (NRT .GT. Kd .CR. OT .LT. 2) IM
GD '70 65
a (.NOT. NLWIIZ) IM
GO '1 85
EDIF

6 NSTRTPT-Il
70 IF (WMTPT+(Kd+-)*DETAY .IE. NPS) THEN

NSMTPT-NSTRTPt I
GO ' 70
EISE

ENDIF
IF (NSR .BE. 1) THM
WRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE (*,*) 'the starting point for processing the data'
WRITE (*,*) 'must be the first point in the data file'
GD TO 85
ENDIF
WRITE (*,*) 'Enter desired starting point in data file'
IF (.ADT. DSET .AND. LUN) TM
WRITE (*,*) '1 indicates the first point in the data file
DIDIF
WRITE (*,*)
WRITE (*,*) 'Given the other parameters choen thus far,'

75 WRITE (*,*) 'the starting point may range from 1'
WRITE (*,*) ' to',NSTRTT
READ (*,*) N
IF (N .(G. 1 .AND. N .1E. NSTRTPT) THM
NSI MT=N

SE
WRITE(*,*) 'Enter starting point aain'
WRITE(*,*)
00 TO 75
EDDIF
IF (.NOT. NUIFfL) GO TO 85

7 WRITE (*,*) 'Do you want the data matrix arrangememt to be'
WRITE (*,*)
WRITE (*,*) '1. Causal'
WRITE (*,*) '2. Non-causal'
WRITE(*,*)
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80 WRITE (*,*) 'Please enter 1 or 2
READ (*,*) MCAUS
IF (?CMJS MB. 1) THEM
CAUSAL=.TRUE.
M (AS .DE. 2) THEN
CAUSALr-.FALSE.
ESE
GOT 7 80
ENDIF
GOTO 85

9 VR.Z i*,*) 'Eter title of file to contain parameters'
READ (*,105) TrnM

OPEN(1,FInDrL)
WRITE(1, 105) TITLE
WRITE(1,110) NPTS
WRITE (1, 110) NRT
WRITE (1, 110) Kd
WRITE(1, 110) M
WRITE(1,110) DELTAY
WRITE (1, 110) NSTRTPT
WRITE(1, 110) CAUS
CLOE (1)
IF (DSE) GO MO 85

12 IF (DSET) ThM
CUOE(2)
CLOSE (3)
CALL SBPLT (NOVELAY)

8E DSET-.TRUE.
NUFILE=.FAI SE.
WRITE(*,*) ' '
WRITE(*,*) '1. Data file to be processed ',T

+ITLE
WRITE(**) ' Number of data points in data file ',NP'S
WRITE(*,) '2. Estimated order of the system ',NRT
WRITE(*,*) '3. Kd, the number of columns in the data matrix',Kd
WR1TE(*,*) '4. X, the number of rows in the data matrix',M
WRITE(*,*) '5. Spacing between data points being processed ',DLTA

+Y
WRITE(*,*) '6. First point in the data file to be processed' ,NSTRT

+PT
WRITE(*,*) ' Last point in the data file to be processed',NSTRT IF

4PT4Kd+HI-lIF WrkUS .EQ. 1) 7
WRITE(*,*) '7. Data matrix arrangement for processing CA

+USAL
LSE
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I

WRn.fl(*,*) '7. Data matrix arrangement for processing NO-CA" +U{SAL '

ENDIF

WRI.TE(*,*) '8. Begin processing using above settings'
'RITE(*,*) '9. Store parameters 1-7 in a file'
WRITE(*,*) '10. Retrieve parameters 1-7 from a previously created

+file'
WRITE(*,*) '11. Reset overlays'
WRrIE(*,*) '12. Re-plot overlays'
WRITE(*,*) '13. Ed this session of Kumaresan-Tufts signal process

+ing'
WRITE(*,*)
WRrIT(*,*) 'Enter an integer from 1 to 12 to make changes as often
+ as you desire'

90 READ (*,*) MEV
IF (?NhMJ .LT. 1 .R. NM .GT. 13) THEN
WRnTE(*,*) 'Enter an integer from 1 to 13'
G TO 90
ENDIF

GO TO (1,2,3,4 ,5,6,7,8,9,10,11,12,13),N j

8 OPEN(1,(1,f~ )
READ (1,105) HAE

READ (1,110) NPTS
READ (1,115) XQ
READ (1,115)

DO 95 I=1,NPTS
READ(I,115) D(I)

95 CONJE
CIMSE(1)
KdPLT=Kd
WRITE(*,*) 'Enter title of file to ontain real part of poles'
READ (*, 105) TITL
MEN (2, f ile=TITLER)

WRMTE(*,*) 'Enter title of file to contain imaginary part of poles'
RED(*,105) TIL7I
OFEN (3, file-TI7LE)
WRITE(10,100) (KdPLT)
WRITE (10, 105) Tu
WRITE (10,105) T1TL.1

100 FRMT(I)

MN4%X(M,Kd)

105 F(PUMT (A)
110 FOMT (5)
115 FOM T(El2.6)
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120 FtMT (Al)

C Form data matrix

DO 125 I=1,Kd+M
Dy(I)=D((I-1) *IITAY+NsRTPT)

125 CCTfIrME

130 DO 140 I=1,M
DO 135 J=1,Kd
A(I, J)--Dy(I+J)

135 (OMME
140 CQNTINUE

B(1)=Dy(1)

DO 145 I=2,M

145 CCIrIE

C Begin singular value decomposition

CALL SVD (MA(W,M, Kd, M,A,W,MAMJ,U,MATV,,V IER, RV)

C Errors in SVD?
IF (IERR .Gr. 0.0) THEN
WRITE (*,*) 'Error in singular value number ',IERR,SMOP
ENDIF
IF (YN .EQ. 'N') GO TO 190

DO 150 I=1,Kd
XP(I)=0.0

150 CONrM

C Discard or compensate eigenvalues
C Order singular values

XP(1)=W(1)
DO 165 I=2,Kd
DO 160 J=l,I
IF (W(I) .GT. XP(J)) THEN
DO 155 K=I+1,J,-1

155 XP(K)=XP (K-1)
XP (J) =W(1)
GD I 165
ENDIF

160 CETIM
XP(I+1)=W(I)

165 CCNTME

C XP( ) nw contains ordered singular values-XP(1) is the largest
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C Discard eigenvalues
IF (DlC KD. 'Dl) TW
DO 170 J4IRT+1,JKi

170 W (J) =(0. 0)

C CaNpensate eiguivalues

DO 175 J=NRT+1,Kd

175 CITIME
IF (Kd .GT. ?WT) AV:4VGf8BLE(FUAT(Kd-*R))

DO 185 J=1,Kd
DO 180 K=1,Kd
IF ( W(J) EQ~. XP(K ) TIHE

IF ( K .GT. NRT )THEN

ELSE
W(J) =DSRT (DABS( W(J)*W(J)-AVG))
ENDIF
GO m0 185
ENIF

180 CCTINLE
185 QCCTIIJ

I2IDIF

190 DO 200 I=1,M
DO 195 J=1l,M
tTr(IJ)=(U(JI))

195 cI'?wJ
200 CofrINE

c Form SI~+ (KdxdM)
DO 210 I=1,Kd
DO 205 7J=l,M

IF (I EQ~. J AN4D. W(J) .NE. 0.0) 7WM
SIGMA U, J) 1. D/W(Q)

ENDIF
205 Q0D(JE
210 CoTw.JE

C Form SIGMA (?W~d)
DD 220 I=1,M
Do 215 J=1,Kd
SIG (I, J)=O .0
IF (I MD. J) SIG(I,J)=V(J)
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215 CaIMhE
220 CONIME

C V=Kdxd~d, SIGtA4-Kd,VS=td
CALL JVIL (V, SIGMA, Kd, Kd, M, VS)

C Vs~ceM UT e!, AIWvdxe(
CAL.L KIJL(VS,UTr,Kd,M,M,AlNV)

C Calculate matrix multiplication of AM( x B, where: Caclt uoersiecefcet from prediction~ coefficients
IF (XP(Kd) EQ3. 0.0) THENJ
WRITE (*,*) 'MM avoiding divisionb eo

B(Kd)=.0d0/XP(Kd)
EDIF
DO 225 1=2,101

225 COMDIJE

DOIX 230 11K
X (I) -B (Kd-I+1)
IF (MCAUS EQ. 1) X(I-)=-X(Kd-I+1)

230 CONTIM~E
X (Kd+l) =1. 0

C Caanp.te the roots of the polyrnmal in z

CALL POLRT(X,COF,ID,ROTR,RWr,IER)

IF (I E 0) WRIJTE (*,*) 'ERROR with POLRT, IE=',IE,'1

DO~ 235 1=1,101

235 Q2ITIMJE

DO' 240 1=1,101
IF (CDS(S(I)) GE. L.OW) MAGP0b494AO+1

240 COMM

1IPJT(*,*) 'I of poles with magnitude (= 1',Kd-4WGPOL
WRIJTE (*,*) 'HIT? ANY KEY TO~ COTI"1'
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C Plot poles

VVRIY=NDVIAY+I
ISE (2)

CIM (3)
CAIL SLSPLT(NMVLAY)

,7=O
K=O

DO 245 1=l,Kd
IF (CDABS(S(I)) .LT. 1.0) TE
J=J+1
K=K+I
WRITE (*,*) S(I),CDABS(S(I))
EDIF
IF (Q .BE. 20) IM
WRITE (*,*) 'Enter any key to continue'
READ (*,105) HEADER
J=O
ENDIF

245 COUE

WRITE(*,*) Pules with magnitude less than one: ',K

GO T 85
13 SITP

1D
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APPENDIX B: THE CADZOW-SOLOMON POLE EXTRACTION ALGORITHM

The following program implements the Cadzow-Solomon

algorithm as described in Chapter 2 of this thesis. The

program is written in Fortran 77. The SVD and root-finding

subroutines called by this program are found in the EISPACK

library [181 . The SVD subroutine is a translation from ALGOL

as given in [19] . The matrix multiplication and graphics

subroutines, also called by this program, hre found in

Appcndix C and D respectively.

SLARGE
1TER IER, Kd, Kn, M, MN, MAGPOL, NSTRTPT, DELTAY

DnUER IER,NALJS ,NW&U, DJS7hT
IRIT*2 KdPLT
REAL*8 A(7,70) ,W(70) ,U(70,70) ,V(70,70) ,RV1(70)
REAL*8 VS(70,70),UT(70,70),AINV(70,70),X(70)
REJL*8 XP (70), B (70), SIGMA (70,70), SIG (70,70)
REAL*8 COF(70) ,ROOTR(70) ,R00TI (70)

REAL MAG
REAL*3 D(1024),AVG,MACHEI/1.OE-16/,Dy(140),Dx(1024)
0CCPLEX*16 S (70)
IGICAL MATIU/. TRUE. /,M ATV. TRUE. /, CAUSALI. TRUE. /,I/, I. TRUE./
LOGICAL DSET/.FALSE./, UFIE/.TRUE.I
CARACTR TITLE*I6,DF*64,YN*IDC* 1 ,T *16, Tr *16
CHARACTER !T1 16, TITD*l6

C Enter parameters for processing

14 IF (DSET) CLOSE(10)
NUVELAY=0
OPN (10,FILE--'PLOT' )
IF (DSET) GO TO 215
WRITE (*,*) 'Welcome to signal processing using the'
WRITE (*,*) 'Cadzow-Solcamm method'
WRITE (*,*)
WRITE (*,*) 'Do you want
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WRITE (**)
WRITE (*,*) '1. The long version for beginners'
WRITE (*,*) '2. The short version for pros'
WRITE (**) '

25 WIlTE (*,*) 'Please enter 1 or 2
ReiD (*,*) N

IF (N .A. 1) T
IM=AM TRE.
ELSMF (N .AQ. 2) TM
IDND=oFALSE.

ESE
GO T 25
DIDIF

WRITE (*,*) 'Session will begin with entry of parameters needed fo
+r processing'

WRITE (*,*)
WRITE (*,*) 'Do you want to enter parameters fran'
WRITE (*,*) '

WRITE (*,*) '1. The keyboard'
WRITE (*,*) '2. A previously created file of parameters'
WRITE (*,*)' '

35 WRITE (*,*) 'Please enter 1 or 2
READ (*,*) N
IF (N EQ. 1) T2)N
OTO 8

13 WRITE (*,*) 'nter title of file containing parameters'
READ (*,100) TIT

READ(l, 100)TIL

READ(,l110) NPTS
READ(1,110) NRT
READ(l, 110) Kd

READ(1,1I0) M
READ(I ,1i0) I)ELTAY
READ(I, i!0) NSTRTPT
READ(1 II0) NCAUS
REAl)(1,i00) TITLD
READ(I Ii0) NDMTS
READ(1, 110) Kn
READ(I II0) DCNR
CU)SE(1)

GD M 215
UE
GO TO 35
)NDIF

WRITE (*,*)

8 WRITE (*,*) 'Enter title of file containing excitation waveform'
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READ (*,100) TITLD
CPEN(8,Fn4r)
RED (8, 100) D

READ(8,110) N
IF (N .GT. 1024) T!
WRITE(**) 'Number of points in data file excee s the dimension'
WRITE (**) 'of the array used in the program to store the file'
SKCP

ENDIF
CALSE(8)
IF ((N GE. NDPTS) .AND. DSET) MEN

GO TO 215
ENDIF
NIPTS--N

9 WRITE (*,*) 'Biter estimated order of waveform'
IF (DSET) TMN

IF (MAWI' .GT. M-Kd-1) MAXMUM-Kd-1
IF (MkXIMt1I GT. NDPTS-nISTRTPr-Kn-4+1) THI
MXIM U=NDPS-INSTRTPT-Kn-MI41
E!DIF
ELSE
NLXDtM=66
ENDIF
IF (MIxIt .E2. 1) MhEN
WRITE (*,*) 'The estimated order of the waveform can only be 1'

IF (DSET) GO TO 215
GOTO 10
ELSE
IF (DSET) T
WRITE (*,*) 'Given the other parameters chosen thus far,'
ENDIF

45 WRITE (*,*) 'the order may range from 1'
WRITE (*,*) ' to',MM
READ (*,*) Kn
IF (Kn .GE. 1 .AND. Kn .LE. MAXIM) T
IF (DSET) GO TO 215
GO TO 10
ENDIF
WRITE (*,*) 'Biter estimated order agrain'
WRITE (*,*)
GO TO 45
EIDIF
IF (DSET) GO TO 215

10 INST'R"I -1
55 IF (INSTIIWP'+M-1 .GT. NDPTS) TEI

INRT-NSTRTPr-I

127



ESE
INSTRTT)=-ThSTRTFT+1
GO 70 55
E)DIF
XSTRT=-INV1RTPT

HIiDCnS'l B2). 1) !7MD
WRITE (**) 'The first point can only be 1'
GO 7O 215
ELSE

(*,*) 'Enter first point in waveform file to be processed'
65 WRITE (*,*) 'Given the other parameters chosen thus far,'

WRITE 'the starting point may range from 1'
WRITE (*,*) ' to' ,MTRT

(*,*) INSTRTPT
IF (INSTRTM .GE. 1 .AND. INSTRTPT .LE. KSTT) TM
r (DSET) GO O 215
GO TO 1
ENDIF

WRITE (,*) '&nter starting point again'
WRITE (*,*) '

GO MO 65
ENDIF
IF(DSET) GO M 215

IF (.NMT. DSET) NflLE=.TRUE.
IF (.MOT. DSET) NsTRTP=-I
WRITE (*,*) '&nter title of data file to be read'
READ (*,100) TITE
C(EN(12,)Fn.=TI)
READ (12, 100) ME

READ(12,li0) NMTS
IF (NPTS .GT. 1024) TRW
WRITE (*,*) 'Number of points in data file exceeds the dimension'
WRITE (*,*) 'of the array used in the program to store the file'
STOP

ENDIF
CLOSE (12)

IF (NUFnz) TmN
GOTO3

ILEF(NSTRTPT+(Kd+M-1)*DMTAY .JE. NPTS) THEN
GO O 215
HZE
GO TO 6
ENDIF

3 IF (NUFILE) TMW
PIXIM-i69-Kn-1
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IF (NMIR1 .GT. MPrS-69) MGuIPIs-69

IF (MI AQ2. MLKQ1II) THEN~
Kd4=4I
WRITE (**) 'Given the other parameters chsen thus far,'
WRITE (*,*) 'Rd must be ',A4i

E0DIF

WRITE (*,*) 'Enter Kd, >= the estimated order of the system

WRITE (*,*) 'Given the other parameters chosen thus far,'
75 WRITE (*,*) 'Kd may range fran',MIN

WRTE(*) ' to' ,AXIXLI
READ (*,*) Kd
IF (Kd .GE. MIN .AND. Kd .LE. MUhM) GO TO 4
GO TO 75

MkDMMKn-I

IF (MIM"J .GT. NPTS-M) MMO M-M
KD=2
N=MkXDM

85 IF (NSTTT+ (N+M-1)*DELTAY LE. NPTS) Th

Kd=4N
GO TO 215
KE= (MkD .LT. MIN) THEN
D:&TAY=1
IF (1+(2+M-1)*DELTAY .LE NP'S) THEN
K-2
GO TO 135
EDIF
WRITE (*,*) 'Error. Kd must be less than 2'
Kd=2
GO TO 215
ENDIF

WRITE (*,*) 'Given the other parameters chosen thus far,'
95 WRITE (*,*) 'Kd may range from 1j"

WRIE(*,*) ' to',
IE(*) 'Enter Kd'

RD (*,*)d
IF (Kd .GE. KIY .AND. Rd .hE. M1QDUM) GO 'O 215
GO TO 95

N=N-I
GO TO 85

ENDIF
ENDIF
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C Determine M
4 IF (NLMFL) THEN

WRITE (*,*) '&ter M, the row dimension of the data matrix'
IF (.NOT. DSET .AND. 1aG) TH
WRITE (*,*) ' '
WRITE (*,*) 'Note: Kd+M points in ',title
WRITE (**) ' will be processed
WRITE (*,*)
EDIF

105 WRITE (*,*) 'M may range frcm',Kd
IF (NPT-Kd .GT. 69) TMN
WRITE (*,*) ' to 69'

LSE
WRITE (**) ' to',NFrS-Kd
ENDIF
READ (*,*) M
IF (M .GT. 69) T
WRITE (*,*) 'M must also be less than 70'
GOD TO 105
ELSIF (M .LT. Kd) IM
WRITE (*,*) 'M must be greater than or equal to Kd, Kd= ',Kd
GOTO 105
FSEIF (Kd+M .Gr. NPTS) T
WRITE (*,*) 'Kdo+M must be less than or equal to' ,NPTS,','
WRITE (*,*) 'the number of data points in',TILE
WRITE (*,*)
GO TO 105
ENDIF

C Begin part for data already set
ELSE
N=Kd

115 IF (NSmTP7+(Kd+N-1)*DELTAY .LE. NPTS) TM{E
N=N+I

GO 70 115
E

1=f-1
ENDIF
IF (N .. Kd) TH
WRITE (',) 'N must equal',Kd
M=Kd
GD TO 215
ENDIF

IF (1MUM .GT. 69) MLXIH69
IF (Kd+K+1 .A. MXIUO THEN
NW=d+Kn+l
GOD TO 215
rMy (Kd+K+l .GT. MME M) THEN
WRITE (*,*) 'Kd must be reduced'
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GOM03
E

lDMUI+KIn+l
DDIF

IF (Im .LT. Kn+Kd+l) MDMIn+Kd+
125 WRIE (**) 'M may range fro',MINWImm ( I) to',muXI

WRInE (*) 'Enter M'
RAD (*,*) M
IF (M .G. MIN .AND. M .LE. MUM) GO O 215
GD 0 125
DEDIF

c Determine MITAY
135 IF (.NOT. IFILE) GOD TO 215
5 N=I
145 IF (NSTRTTN*(Kd+M-1) .LE. ?FTs) THEN

N=K+l
GD To 145
ELSE
N=N-1
ENDIF
F (N .EQ. 1) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,'

WRITE (**) Spacing can only be 1'
E&TAY=I

IF (NUFILE) THN
GO 1M 165
ELSE
GD 'M 215
ENDIF
EIDIF

IF (.NOT. DSEr .AND. ICM) TEN
WRITE (*,*) 'Enter spacing between the ',Kd+M
WRrTE (*,*) 'data points of ',TITLE
WRrTE (*,*) 'to be processed
WITTE (*,*) '

WRITE (*,*) 'If, for examle, one is chosen, then ',Kd+M
WRITE (*,*) 'consecutive points in ',TITL
WRI'E (**) 'will be processed
WRITE (*,*)
HE
R (*) 'Enter spacing

DIDIF
155 WRITE (*,*) 'Spacing may range from 1

WRITE (*,*) ' to',N
RED(*) TAY
IF (iT2AY .G. 1 .AND. DELTAY .IE. N) T
IF UMTIL) THE
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0O TO 165

GO TO 215
ENDIF
E

O TO 155
ENDIF

165 WRITE (*,*) 'Do you wish to adjust eigenvalues? (y/n)'
READ (*,150) YN
IF (YN .A2. 'N' CR. YN .M. 'n') THM
IF RNJIME) GO 'TO 6
O TO 215
E)DIF
IF (YN .ME. 'Y' .AND. YN .E. 'y') Go 70 165

2 WRITE (*,*) 'Discard or compsate eigenvalues? (d/c)'
RED (*,150) DC
IF (DC .AQ. 'D' .OR. DC .AQ. 'd') THM

GD TO 175
ENDIF
IF (DC .NE. 'C' .AND. DC .ME. 'c') GO '0 2
WRITE (*,*) 'Enter estimate of the actual order of the system'
WRITE (*,*)'
IF (IM) THEN
WRITE (*,*) 'This estimate will be used to determine the
WITE (**) 'number of eigenvalues compensated or discarded
ENDIF

175 WRITE (**) 'the estimate may range fran 2'
WRITE (*,*) ' to',Kd+Kn+l
READ (*,*) RT
IF (NRT .GT. Kd+Kn+l .OR. NRT .LT. 2) THM
GO TO 175
EmSEIF (MNOT. MFlLE) im
00 'O 215
DIDIF

6 STI''rT-I
185 IF (NS'I)r+(Kd+M-I)*r&1 TAY .1E. MPT ) THYN

NM TPD_ I
G0 TO 185
ELSE
NSTRTPNW TI-I
DIDIF
IF W1RV .3. 1) TM
WRITE (**) 'Given the other parameters chosen thus far,'
WRITE (**) 'the starting point for processing the data'
WRITE (*,*) 'must be the first point in the data file'
00 TO 215
DIDIF
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WRITE (*,*) 'Biter desired starting point in data file'
IF (.T. DSET .AND. LNG) THEN
WRITE (*,*) 'l indicates the first point in the data file
ENDIF
WRE(**)
WRITE (**) 'Given the other parameters chosen thus far,'

195 WRITE (*,*) 'the starting point may range from 1'
WRITE (*,*) ' to',MTRM
RD.D (*,*) N

IF (N GE. 1 .AND. N .LE. MMIMPT) IMiN
N STRTPTWq

WRITE (*,*) 'Enter starting point again'
WRIE(**)
O 'T 195
ENDIF
IF (.T. NJFLE) GO TO 215

7 IF (DSET) IM
IF (AUs .F. 1) IM
NCAUS=2
00 TO 215
ELSE
NCAUS=l
GO 7T 215
NDIF

ENDIF
WRITE (*,*) 'Do you want the data matrix arrangement to be'
WRITE (*,*)
WRE(*,*) 'I. Causal'
WRITE (*,*) '2. Non-causal'
WRITE 1 '

205 WRITE (*,*) 'Please enter I or 2
READ (*,*) MAUS
IF (NCMUS .Q. 1) I
CAUSAL--.TRUE.

LSEIF (MCAUS .2. 2) TMD
CAUSAL-.FLSE.
EUSE
O t 205
IDIF

O IT 215

12 WRITE (*,*) 'Enter title of file to contain parameters'
RED(*,i00) TMT
O E(I,F1LX4 )
WRITE(1, 100) TITLE

WRITE(1,110) NPTS

WRITE(1, 110)3
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WRITE(, 110) Kd
WRITE(1,110) M
WRIE (1, 110) IDETAY
WRIT (1,110) NSTRTPv
WR17E(1,110) NOWU3
WRITE(1,100) TII
WRITE (1, UO) NDITS
WR (1,110) Kn
WRITE(1,110) INSTRTPT
Cf0SE(1)

IF (DST) GO M 215

15 IF (DSET) THEN
CbOSE(2)
aX=(3)
CALL SBPLT (NO RLAY)
NDIF

215 DS'T=-.TRUE.
NUFIL&=.FALSE.
WRITE (*,*) ' I

WRITE(*,*) '1. Data file to be processed 1,T

+ITLE
WRITE(*,*) ' Number of data points in data file ',NFS
WRITE(*,*) '2. Estimated order of the system ',NRT
WRITE(*,*) '3. Kd, the number of columns in the data matrix',Kd
WRITE *,*) '4. M, the number of rows in the data matrix',M
WRITE(*,*) '5. Spacing between data points being processed ',DELTA

+Y
WRITE(*,*) '6. First point in the data file to be processed',NSTRT

+FT
WRITE(** Last point in the data file to be processed' ,NSTRT

+PT+Kd+M-I
IF (WAUS .E. 1) TH
WRITE(*,*) '7. Data matrix arrangement for processing CA

4USAL '

ESE
WRITE(*,*) '7. Data matrix arrangement for processing NON-CA
4{SAL '

BDIFWR1TE(**

WRITE(*,*) '8. File containing excitation waveform ',T

WRITE(*,*) ' Number of data points in above file ',NIPS
Wg, E(*,*) '9. Estimated order of the waveform ',Kn

WRITE(*,*) '10. First point in the file to be
WRflE(*,*) ' input into the data matrix ,3T

+TPT
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WRPMT(**)

WRIE(*,*) '11. Begin processing using above settings'
WRITE(*,*) '12, Store parameters 1-10 in a file'

WRITE(*,*) '13. Retrieve parameters 1-10 from a previously created
+ file'
WRITE(*,*) '14. Reset overlays'
WRIT(*,*) '15. Re-plot overlays'
WRITE(*,*) '16. End this session of Cadzaw-Solcmon signal processi

."'
WITE(*,*)
WRITE(*,*) 'Enter an integer from 1 to 16 to make changes as often

+ as you desire'
225 READ (*,*) N

IF (NMlX .LT. 1 .OR. hM .GT. 16) THEN
WRITE(*,*) 'Enter an integer from 1 to 16'
GO O 225
ENDIF

GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),N41 U

11 0f(12,FfZ=l)
READ(12,100) BEAM
REnD(12,110) NPTS
READ(12,120) X2
RM J(12,120) XQ
DO 235 I=1,N PS
READ(12,120) D(I)

235 OCCNT JE
CflSE(12)

OPEN(8,FI IL)
READ (8,100) M

READ(8,110) NDPTS
READ(8,120) X
REfD(8.120) XQ
DO 245 I=1,MDfTS
READ(8,120) Dx(I)

245 COTI(J
CUM (8)

KdPLT-M
WRITE(*,*) 'enter title of file to contain real part of poles'
READ(*,100) TITIR
OIN (2,FfL~'rnUR)

WRITE(*,*)'enter title of file to contain imaginary part of poles
RE (*, 100) Trnn
OPN (3, TfL TMEI)
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WRTI(10,130) (KdPLT)

WRfl (10, 100) TI=L

130 FUAT(IM)

MNMX(M, Kd4Xn+1l)

100 FUAT (A)
110 FUM~T(15)
120 PUM19T(E12.6)
150 FCMT(A)

DO 255 I=1,Kd+M
Dy (I) =D ((I-i) *DELTY4WMp>T

255 CNTIUE

265 DO 285 I=1,M
DO 275 J=1,Kd+Kn+1
A(I,J)=Dy(I+J)
IF QJ GE. Kd+1) A(I,J)=Thc(I+J+IS1 TPT-2-Kd)

275 CCTMJ
285 CCIIE

B (1) =Dy (1)
DO 295 I=2,M

295 COMM~J

C Begin singular value deanposition

CALL SV MCU ,N ,A , AU AV ,IR V

C Errors in SVD?
IF (IERR .GT. 0. 0) 7M!~
WRflT (*)'Error in singular value ninber MIR, S7%*
EDIF
IF ('IN WF~ N) GO T 385

DO 305 I=1,Kd+Kn+1
XP (I) =0. 0

305 CCDrME

C Discard or ooruesate eigenvalues;
c Order singular values
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DO 335 I=2,Kd+Kn+1
DO 325 J--1,1
if (WVI Gr. X(J)) THEN
DO 315 K=I+1,J,-1

315 XP(K)=XP(K-1)
'XP (U) =w Wi
GO 335

325 C%?INU
XP (I+1) =1W MI

335 CXWrDhJ

C XP( ) zx"w contains ordered singular values: XP(l) is the largest

C Dliscard eigenvalues
IF (DC MP.. 'D') THE
DO 345 J--tRT+1,Kd+Kn+l

345 W(J)=(0.0)

C Compnsate eigenvalues
AVG=0 .0
DO 355 J#NRT+1,Kd+Kn+l
AVG=AVG+XP (J)**2

355 CWTIE
IF (Kd+Kn+1 .GT. NRT) AVG=AVG/MBE (FLAT (Kd+Kn+1-NRT))

DO 375 TJ1,Kd+Krn+l
DO 365 K=1,Kd+Kn+l
IF ( W(J) B! . XP(K) 1 THEN

IF ( K .GT. NRT 7MI fl
W(J)=O.O

W(Q) =DW (DABS( W (J) *W (J) -AVG))
EDIF
00 I) 375

365 COr
375 QYNIMWE

ENDIF

385 DO 405 I=1,1M
DO 395 3=1,M
LYF(I,J)=(U(JI)

395 CCfrM~
405 CO~fl(I

C Form SIG?%+ (Kd4{((n-+l x M)
DO 425 I=1,Kd+Kn+l
DO 415 J=-1,M
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IF (I B2~. J .AND. H(J) .NE. 0.0) 7M~

mE

415 00NrMI
425 CONIMJE

C Form SIGMA (M x Kd+Kn+1)
DO 4.45 1=1,M
DO 435 7J=l,Kd+Kn+l

IF (I MH. J) SIG(I,J)=W(J)
435 Q]NTINU
445 CCIM)E

C V=Kd+Kn+1LdKd+Kn+l, SIQGA+=Cd+Kn+IxM, VS=Kd+Kn+lxN
CALL ?VOL(V, SIGMA, Kd+Kn+1,Kd+Kni+1,M, VS)

C VS=Kd+Kn+IdM,UtFPtWM, AIN=d+n+xM
CALL IVOIJL(VS,tUr,Kd+Knr+l,M,M,AINV)

C Calculate matrix multiplication of AINV x B, where

C Bcpue uor lssv coefficients fromn prediction~ coefficients

IF (P(Kd EQ.0.0) THEN
WRITE 'ERRR avoiding division by zero'

FS%

B (Kd) =1.Od/X (Kd)

DO 455 I=2,Kd
B (I-1)-B (Kd) XP(Kd-i+1)

455 CORM9?JE

DO 465 i=l,Kd
X(I)--B(Kd-I+1)
IF (?CJJ EQX. 1) X(I)-X(Kd-I+1)

465 CORJXJE
X(Kd+)=1.0

C Cmpte the roots of the polraial in z

CALL POT(,OF D OTROIR

IF (IER .NE. 0) WRITE (*,*) 'ERROR with POLFT, IE -,I,S7%O
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DO 475 I=1,Kd
WR!TE (2,120) ROOTM(I
WRITE (3,120) KMMI(I

S(I)=DKPLX(ROTR(I),ROTI (I))
475 COTINUE

DO 485 I=1,Kd
IF (CABS(S(I)) .GE. .0) MAGPCL--MA91CL

485 O lTMJE

WRI1(*,*) I of poles with magnitude <= 1',Kd-MGXO
WRITE (*,*) 'HIT ANY KEY O CONTINUE'
READ (*,I00) HEADER

C Plot poles
N'VELiY=:N0VELAY+1
CLOSE (2)
CLOSE(3)
CALL SUBPLT (NOVLAY)

J=0
K=O

DO 495 I=l,Kd
IF (CDABSSV)) .LT. 1.0) THE
WRITE (*,*) S(I),CDABS(S(I))
J=J+l
K=I<+I

ENDIF
IF (J .E). 20) THEN
WRITE (*,*) 'HIT ANY KEY TO CONTINUE'
READ (*,i00) HEADER
J=0
EN DIF

495 ONTINUE

WRTE(*,*) 'Poles with magnitude less than one ',K
WRITE (*,*) 'HIT ANY KEY TO CONTINUE'
READ (*,100) HEADER

0O TO 215

16 ST%

1D
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APPENDIX C. MATRIX MULTIPLICATION

MM9]WOLMM MOM(A, B, RA, CA,CB,AB)
DMM RA,CA,CB
pE *8 A(70,70),B(70,70),AB(70,70)

C Calculates matrix multiplication of A x =AB, where
C A=RAxCA, B=CAxCBAB=RAxCB

DO 30 I=I,RA
D0 20 J=-I,CB
AB (I,J)=O.0
D0 10 K=I,CA
AB (I, J) =AB (I, J) +A (1, K) *B (K, J)

10 OTCNUE
20 CCrIrE
30 CCWTINLE

U1D
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APPENDIX D. GRAPHICS ROUTINE

SLMRMTMN SBLT (NMRIAY)

C
C MS-FRAN Program using "Grafmatic" Library Subroutines.
C Plots a Solid Line and Optional Overlay Plot for Comparison.
C Written by M.A. Morgan with Latest Update August 1989.
C
C Default Printer is "IBM Graphics" (e.g. Epson, Okidata, IB)
C With Plot Rotated 90 degrees From the Vertical. "GrafPlus.Com"
C May be Run to Rotate Plot Upright on Paper and to Use a Variety
C of Impact Printers. "GrafLaser.Cam" May be Run to Use a Laser
C Printer. See GrafPlus/Laser Manual From Jewll Technology.
C
C

CHARACTM*1 YN, YNI, ", YN2, SYMBOL,BEJL,FEED,FFYN
CHARACTE*4 LINE
cSAPACTBR*7 SYMB
CHARACTE*16 LTIT, CTIT, FW I?, Tn, 7=
CHARACTM*64 TITE,HCOPY
R L CI (70),CRTI (70) ,NRM (70) ,NI (70)
IN'T*2 N,JROW,JCOL, ISYMI, ISYM2, 1TYPEI, TYPE2 , NSCRN
INTEGE*2 CYAN, GRE, WHMT, YELLSW, RED, BLACK, BUE, NTWO

fITEMJ*2 JROW1, J1CW2, JCOLI, JCOL2, CRSS, KdPLT, I
INTEG*2 PURPLE, RUST
EMTNAL XM, YI, YF)NN
L E: I -

CYAN=11
YELLO=-14

BLACK=0
BUIJE=l
NTW=2
PURPLE=5
RUMST=6
ILLCHAR(7)
FED=CHAR (12)

C Clear Screen and Put Up Introduction - on Blue Backgound for EA
C Only; Another Background Color is Possible by Changing 'WU'
C in the Calls to 'PREG and QOVSCN.

CALL Q CE (NTWO)
CALL QPR (0,BUJE)
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CALL QMSa (MME)
WRTrE(* BEI

NS=l
NSCRN =16

ITYPE2=0

C Calling GRUMlATIC Routines and PlottixV F1 Solid Line Graph
ITYP1=
ISYMI-1

JROI=l
JROcaI2350
JCCLl= 75
JCC2= 565
XMIN-1.2
XMAX=. .2

Y1IAX=. .20
YOVERX=1. 115
XDRG=O. 0
YORG=0. 0

XFIW1.l

YFIW-1. 1

25 CALL QMM (NSCRN)
CALL MMJO1JO2J ,M )MMXY ,MXXROG

CALL QSETUP (NEO1,CYAN, ISYM, RED)
3:F(X'IN-XST ALE. 9.0) XMAJ=0.6
I'(XFB4-XST ALE. 6.0) X1@83c=0.4
IF(XFN-XST .LE. 3.3) XMMOJc0.2
IF(I-XST .GE. 9.0) X9MOR--(WD-XST) /10.0

KDhR=

LABEL1

CALL WMXS (XSTr, XFIN, D, LAML, MW)

CALL Q"AXS CYST, YFIN ,Y19JMKflzr LABMJ, :)
c Plot unit circle

A-~1.0
B=.0

CXlL QM JR(FUN, YFrW, A, B)
CALL QCIRV(XMVj, YRt, A, B)

IF (NOVERLAY-1 .LT. 1) THEN
IF (NMERIAY-1 .EQ. 0) ~IM
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WRITE (*,3) NOVERAY-1
ELSE

WRITE (*, 3) NZR
ENDIF

WRITE (*,3) PIYJ!RLAY-1
ElmE
WRITE (*,4) NOVERLAY-1
EDIF

3 FM@%T (13,' OVERLAYS')
4 KMT (13,' OVERLAY '

REIMN(10)

DO 20 I=1,?YJ!RIAY
READ (10,110) KdPLT
READ (10,100) 77TIL
READ (10,100) 7T=!

CPEN 3, FflL&TITf)
N~d=KdPLT
DO) 27 -J=l,KdPLT
READ (2,120) NRTR Q)
READ (3,120) NMTIQ%
IF (DSQT(.M!(J)**24NR'fl(J)**2) .(T. 1.1) THN
Nd=N~d-1
NRTR (J) :. 0

EDIF
27 COTIME

PURPLD=5
RUMr4
WHrrE:=7

CYAW11
YELIOW=14
RED12

IF (I EQ. 1) TE
CALL QS1 .J (H~r1 ,CYAN, ISYMi , RE)

EL=FE (I .M. 2) TM~
0A11 QMT1rP (NDO1 ,CYAN, ISYfl , (EEN)

a.S~ (I .FZM. 3) TM~2
GAIL QGETUP (MMr1 , CYAN, ISYM, YELLOW')

CALL QS!EJP (NDOMI, CYAN, ISM~l, BUJE)

CALL QSE'IU(NMM1,CYAN, ISYKI,WRIT)

CALL Q6!MF N=rSI, YAN, ISYKi, RME)
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CALL QsTUP (NMa1, CYAN, ISMf, RUST)

CALL QSE'nJ(NIMT1, CYAN, ISYM1,RED)
ENDIF
CAL mmAD(rryPK,KdPLT,?MTR,MMT)

20 CMCMhJ

READ (*,100) ED*!

HaOY='HARcOOPY-> EN1TER P C( p'
Cal 9"1Tr(30, HOCY, RED, 25,.1)
CALL Q~CJ(55, 1)

MAL WM ~(40, HaPY, BACK, 25, 1)
IF (DUM MNE. 'P' AN4D. DUM ME. 'p') GO TO 40

WRITE (1,160) FEED
100 FURNT(A)
110 PUM~T(12)
120 YOT(E2.6)
160 PFMT ',A,\)
40 C~fT7NUE

MJL QME(NM)
CALL QM (0, BUVE
CALL QOSN(BuiE)
WRMT(*,*) NKd,'Points were plotted'
RETURN

XFUWT
RETURN

REAiL F'tICTICN YFUN (T)

RIM
ED

REAL FWX TICN YFUI (T)
YFUNN--SQRT(1 .0-T*T)
REMMN
ED
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